649 research outputs found

    Intelligent Fault Analysis in Electrical Power Grids

    Full text link
    Power grids are one of the most important components of infrastructure in today's world. Every nation is dependent on the security and stability of its own power grid to provide electricity to the households and industries. A malfunction of even a small part of a power grid can cause loss of productivity, revenue and in some cases even life. Thus, it is imperative to design a system which can detect the health of the power grid and take protective measures accordingly even before a serious anomaly takes place. To achieve this objective, we have set out to create an artificially intelligent system which can analyze the grid information at any given time and determine the health of the grid through the usage of sophisticated formal models and novel machine learning techniques like recurrent neural networks. Our system simulates grid conditions including stimuli like faults, generator output fluctuations, load fluctuations using Siemens PSS/E software and this data is trained using various classifiers like SVM, LSTM and subsequently tested. The results are excellent with our methods giving very high accuracy for the data. This model can easily be scaled to handle larger and more complex grid architectures.Comment: In proceedings of the 29th IEEE International Conference on Tools with Artificial Intelligence (ICTAI) 2017 (full paper); 6 pages; 13 figure

    Developing anti-CD30 recombinant immunotoxins targeting shed and non-shed epitopes for cancer therapy

    Get PDF

    BanditQ -- No-Regret Learning with Guaranteed Per-User Rewards in Adversarial Environments

    Full text link
    Classic online prediction algorithms, such as Hedge, are inherently unfair by design, as they try to play the most rewarding arm as many times as possible while ignoring the sub-optimal arms to achieve sublinear regret. In this paper, we consider a fair online prediction problem in the adversarial setting with hard lower bounds on the rate of accrual of rewards for all arms. By combining elementary queueing theory with online learning, we propose a new online prediction policy, called BanditQ, that achieves the target rate constraints while achieving a regret of O(T3/4)O(T^{3/4}) in the full-information setting. The design and analysis of BanditQ involve a novel use of the potential function method and are of independent interest
    • …
    corecore